1. Identify the following aspects of the trig function below and then graph the function.

$$
f(x)=-3 \sin 2\left(x-\frac{\pi}{2}\right)+1, \quad 0 \leq x \leq 2 \pi
$$

a. Amplitude: 3
b. Period: $\frac{2 \pi}{2}=\pi$
c. Phase shift (horizontal): right $\frac{\pi}{2}$
d. Vertical shift: Up I
e. Express the graphed function as a cosine function:

$$
f(x)=3 \cos \left(2\left(x-\frac{\pi}{4}\right)\right)+1
$$

$$
f(x)=-3 \cos \left(2\left(x-\frac{3 \pi}{4}\right)\right)+1
$$

2. a) Simplify: $\frac{1}{\cos t}-\sin t \cdot \tan t$
$=\frac{1}{\cos t}-\sin t\left(\frac{\sin t}{\cos t}\right)$
$=\frac{1-\sin ^{2} t}{\cos t}=\frac{\cos ^{2} t}{\cos t}=\cos t$

$$
\begin{aligned}
& \text { b) Prove: } \frac{\sin ^{2} \theta}{1-\cos \theta}=1+\cos \theta \\
& =\frac{1-\cos ^{2} \theta}{1-\cos \theta}=\frac{(1-\cos \theta)(1+\cos \theta)}{1-\cos \theta}=1+\cos \theta
\end{aligned}
$$

3. The terminal side of an angle of θ radians passes through the point $(-\sqrt{11}, 3)$. Find the value of all 6 trig functions.
$\begin{array}{ll}3{ }^{\frac{25}{5}-3} & 3^{2}+(-\sqrt{11})^{2}=c^{2} \\ -\sqrt{11} & 9+11=c^{2} \\ & c=\sqrt{20}=2 \sqrt{5}\end{array}$

$$
\sin \theta=\frac{3}{2 \sqrt{5}}
$$

$$
\csc \theta=\frac{2 \sqrt{5}}{3}
$$

$$
\cos \theta=\frac{-\sqrt{11}}{2 \sqrt{5}} \quad \sec \theta=\frac{2 \sqrt{5}}{-\sqrt{11}}
$$

$$
\tan \theta=-\frac{3}{\sqrt{11}} \quad \cot \theta=-\frac{\sqrt{11}}{3}
$$

4. Solve for all real values of $0 \leq x \leq 2 \pi$ in radian measure: $2 \cos ^{2} x-\sin x=1$

$$
\begin{array}{ll}
2(1-\sin 2 x)-\sin x=1 \\
\text { Let } u=\sin x \\
\partial\left(1-u^{2}\right)-u=1
\end{array} \quad \begin{aligned}
& 2-2 u^{2}-u=1 \\
& 0=2 u^{2}+u-1 \\
& 0=(2 u-1)(u+1)
\end{aligned} \quad \begin{aligned}
& u=\frac{1}{2} \\
& \sin x=\frac{1}{2} \\
& x=\frac{\pi}{6} \frac{5 \pi}{6}
\end{aligned} \quad \begin{aligned}
& u=-1 \\
& \sin x
\end{aligned} \quad \begin{aligned}
& x=\frac{3}{3}
\end{aligned}
$$

a) Find the measure of angle B. $110^{2}=190^{2}+85^{2}-2(190)(85) \cos B$

$$
\begin{gathered}
\cos B=\frac{-31225}{-32300} \\
B \approx 15^{\circ}
\end{gathered}
$$

b) Use the measure of angle B to find the area of $\triangle A B C$.

$$
\text { Ane= } \left.=\frac{1}{2}(100) / 85\right) \sin 15^{\circ} \times 2090
$$

\qquad
6. Write down a simpler expression that $\sin (\pi-x)$ is equivalent to:

$$
\begin{aligned}
& \sin \pi \cos x-\cos \pi \sin x \\
& 0 \cdot \cos x-(-1) \sin x=\sin x
\end{aligned}
$$

7. Solve for all values of θ in the interval $0 \leq \theta<2 \pi$: $\sqrt{3} \cot \theta+3=0$

$$
\begin{array}{ll}
\cot \theta=\frac{-3}{\sqrt{3}} & Q 2: \theta=\frac{5 \pi}{6} \\
\tan \theta=-\frac{\sqrt{3}}{3} & Q 4: \theta=\frac{11 \pi}{6}
\end{array}
$$

8. Find an equation for these graphs:
a)

$$
y=1.5 \sin x
$$

b)

$$
y=\cos (2 x)
$$

c)

$y=\sin (2 x)$
9. Let $\sec x=-2$.
a) What is $\cos x$?

$$
\cos x=-\frac{1}{2}
$$

b) Solve the equation above for $x \in[0,2 \pi)$

10. Consider the equation $\cos ^{2} x=\frac{3}{4} . \rightarrow \cos x= \pm \frac{\sqrt{3}}{2}$
a) How many solutions do you expect this equation to have, for $x \in[0,2 \pi)$? Why?
4. The x-coordinate an the unit circle is
$\frac{\sqrt{3}}{2}$ is 2 places and $-\frac{\sqrt{3}}{2}$ in 2 more.
b) Find those solutions!

$$
x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
$$

11. Consider the function $f(x)=\tan x$ on the interval $x \in[0,2 \pi]$.
a) What is the period of f ?

b) What are the zeros of f ?

$$
0, \pi, 2 \pi
$$

c) Where does f have vertical asymptotes?

$$
\frac{\pi}{2}, \frac{3 \pi}{2}
$$

12. Sognefjord is going on a Ferris wheel. Its diameter is 60 feet, and it takes 100 seconds to complete one full counterclockwise rotation. Sognefjord enters the wheel at its lowest point, which is 2 feet off of the ground, when $t=0$.
a) Sketch one cycle of the ride. Label important points on the x and y axes.

32

$$
\begin{aligned}
100 & =\frac{2 \pi}{3} \\
2 & =\frac{\pi}{50}
\end{aligned}
$$

b) Write an equation of the form $f(t)=\operatorname{Acos}(B t)+C$ to model Sognefjord's height above the ground t seconds after she started the ride. Then check in your calculator to make sure your equation matches your graph from a!

$$
f(t)=-30 \cos \left(\frac{\pi}{50} t\right)+32
$$

13. How many solutions do you expect the following equations to have, for $x \in[0,2 \pi)$? Why? No need to solve.
a) $\sin (x)=\frac{1}{3} \frac{1}{3}$ 2 sol.
b) $\sin (2 x)=\frac{1}{3} 37-\frac{1}{2} \pi$ 4501.
c) $\sin (x)=3$

d) $\sin (3 x)=1$,
\qquad
14. Let $\cos x=\frac{1}{3}$ where x terminates in quadrant 4.
a) Find the exact value of $\sin x$. Be sure to draw a picture to make sure your answer makes sense!

$$
\begin{aligned}
& \cos ^{2} x+\sin ^{2} x=1 \\
& \left(\frac{1}{3}\right)^{2}+\sin ^{2} x=1
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{9}+\sin ^{2} x & =1 \\
\sin ^{2} x & =8 / a
\end{aligned} \quad \rightarrow \sin x= \pm \sqrt{\frac{8}{4}}
$$

b) Find the exact value of $\sin (2 x)$.

$$
=2 \sin x \cos x-2\left(\frac{-2 \sqrt{2}}{3}\right)\left(\frac{1}{3}\right)=\frac{-4 \sqrt{2}}{4}
$$

15. Find the exact value of the following:
a) $\sin \left(\frac{2 \pi}{3}\right)$

$$
=\frac{\sqrt{3}}{2}
$$

b) $\cos \left(\frac{11 \pi}{6}\right)$
c) $\sin \left(\frac{7 \pi}{4}\right)$
$=-\frac{1}{\sqrt{2}}$
g) $\sec \left(\frac{\pi}{6}\right)$
h) $\csc \left(\frac{\pi}{4}\right)$
$=-\frac{1}{\sqrt{3}} \quad=\frac{0}{1}=0$
d) $\cos \left(\frac{3 \pi}{2}\right)$

$$
=0
$$

e) $\tan \left(\frac{5 \pi}{6}\right)$
f) $\cot \left(\frac{\pi}{2}\right)$

$$
=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}
$$

16. Prove that:
a) $\frac{\sec x}{\cot x+\tan x}=\sin x \quad \frac{\frac{1}{\cos x}}{\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}}$

$$
=\frac{\frac{1}{\cos x}}{\cos ^{2} x+\sin ^{2} x}=\frac{1}{\sin x \cos x} \cdot \frac{\sin x \cos x}{\cos ^{2} x+\sin ^{2} x}
$$

b) $\frac{1+\cot x}{\tan x+1}=\cot x \quad \frac{1+\frac{\cos x}{\sin x}}{\frac{\sin x}{\cos x}+1}=$

$$
=\frac{\frac{\sin x+\cos x}{\sin x}}{\frac{\sin x+\cos x}{\cos x}}=\frac{\sin x+\cos x}{\sin x} \cdot \frac{\cos x}{\sin x+\cos x}
$$

